Théorie de l'information - TD1

Fonctionnement: Vous aurez deux exercices à rendre sous forme manuscrite toutes les deux séances. Ils seront corrigés en TD. En cas d'absence, vous pouvez envoyer un scan des exercices par mail à l'adresse christophe.levrat@math.cnrs.fr. Vous pouvez également rendre si vous le souhaitez les exercices marqués d'une étoile (\star) ; ils servent à aller plus loin et ne seront pas corrigés en TD.

Exercices à rendre pour le 06/10: 5 et 6.

Exercice 1 (Pièces et dés). Modéliser les expériences suivantes par une variable aléatoire réelle sur un espace probabilisé fini. Calculer l'entropie de cette variable aléatoire.

- 1. La valeur d'un dé à 6 faces équilibré.
- 2. La somme de 2 dés à 4 faces équilibrés.
- 3. Le nombre de "pile" obtenus en lançant 2 pièces équilibrées.

Exercice 2 (Somme de dés). On lance simultanément deux dés D_1, D_2 à 6 faces. On définit les deux variables aléatoires suivantes à valeurs dans $\{0,1\}$: $X_1 = 1$ si et seulement si $D_1 \geqslant 4$, et $X_2 = 1$ si et seulement si $D_1 + D_2 \geqslant 5$.

- 1. Donner la loi jointe de (X_1, X_2) .
- 2. Calculer $H(X_1), H(X_2), H(X_1, X_2)$.
- 3. Calculer les entropies conditionnelles $H(X_2|X_1)$ et $H(X_1|X_2)$.

Exercice 3 (Fonction d'entropie). Soit $f: [0,1] \to \mathbb{R}$ la fonction définie par f(0) = 0 et, pour tout $t \in]0,1]$, $f(t) = -t \log_2(t)$.

- 1. Montrer que f est continue.
- 2. Montrer que f est strictement concave sur [0,1], qu'elle y admet un unique maximum et déterminer celui-ci.
- 3. Soit X une variable aléatoire à valeurs dans $\{1, ..., n\}$. Déduire de la question précédente que $H(X) \leq \log(n)$.
- 4. À quoi correspond le cas d'égalité dans l'inégalité précédente ?

Exercice 4 (Non-création d'information). Soient X, Y deux variables aléatoires à valeurs dans un ensemble A définies sur un même espace probabilisé discret (Ω, p) . Soit $f: A \to B$ une application. Soit $Z: \Omega \to B$ une variable aléatoire.

- 1. Montrer que H(f(X)|X) = 0: c'est le principe de non-création d'information.
- 2. En déduire que $H(f(X)) \leq H(X)$.
- 3. Si H(Z|X) = 0, montrer qu'il existe une application $g: A \to B$ telle que Z et g(X) ont même loi.
- 4. Si X, Y sont à valeurs dans \mathbb{R} , montrer que $H(X+Y), H(XY), H(e^{X^2Y^3}) \leqslant H(X) + H(Y)$.

Exercice 5 (Divergence). Soient p,q des distributions de probabilité sur un même ensemble fini S. On définit leur divergence de Kullback-Leibler par

$$D_{\mathrm{KL}}(p||q) = \sum_{\substack{x \in S \\ p(x) > 0}} p(x) \log_2 \left(\frac{p(x)}{q(x)}\right) \in [0, \infty]$$

où l'on pose, pour tout x > 0, $x \log_2(x/0) = \infty$.

- 1. Donner un exemple montrant qu'en général, $D_{\mathrm{KL}}(p||q)$ et $D_{\mathrm{KL}}(q||p)$ ne sont pas égales.
- 2. En utilisant l'inégalité $\ln(x) \leqslant x 1$ valable pour tout x > 0, montrer que $D_{\mathrm{KL}}(p||q) \geqslant 0$.
- 3. Montrer que $D_{KL}(p||q) = 0$ si et seulement si p = q.
- 4. Est-ce que D_{KL} définit une distance sur l'ensemble des distributions de probabilité sur S?

Exercice 6 (Loi géométrique). Soit X une variable aléatoire à valeurs dans \mathbb{N} suivant la loi géométrique de paramètre $p \in [0,1]$. Cette loi vérifie pour tout $n \in \mathbb{N}$: $\mathbb{P}(X=n) = p^n(1-p)$. (Attention à cette convention! Il y a au moins 4 définitions possibles de l'expression "loi géométrique".)

- 1. Rappeler quel type de situation est modélisé par la loi géométrique.
- 2. Calculer l'espérance de X.
- 3. Calculer l'entropie de X.
- 4. Soit Y une variable aléatoire à valeurs dans \mathbb{N} d'espérance $\mathbb{E}(X)$. Exprimer H(X) H(Y) en fonction de la divergence de Kullback-Leibler des lois de X et Y, et en déduire que $H(Y) \leq H(X)$.

Exercice 7 (* Une distance entre variables aléatoires). Soit (Ω, p) un espace probabilisé discret. Soit A un ensemble de cardinal n. Étant donné deux variables aléatoires $X,Y:\Omega\to A$, on définit leur distance par d(X,Y)=2-(H(X)+H(Y))/H(X,Y). On dira que les distributions de X et Y sont équivalentes si la matrice de leurs probabilités jointes $(p(X=x,Y=y))_{(x,y)\in A\times A}$ contient au plus un terme non nul par ligne et par colonne.

- 1. Montrer que cette équivalence de distributions définit bien une relation d'équivalence. En quoi cette notion d'équivalence est-elle raisonnable ?
- 2. Montrer que d est symétrique et vérifie l'inégalité triangulaire.
- 3. Montrer que si X et Y ont des distributions équivalentes alors d(X,Y) = 0.
- 4. Montrer que si d(X,Y) = 0 alors X et Y ont des distributions équivalentes.

On a montré ici que l'ensemble des variables aléatoires sur Ω à valeurs dans A modulo la relation d'équivalence des distributions est un espace métrique ; l'application d est appelée distance de Rajski, en l'honneur du mathématicien polonais qui l'a introduite en 1961.

Exercice 8 (* Tirage dans un polygone régulier). Soit P_n un polygone régulier à n sommets. Soit D_n le groupe des isométries de P_n . On rappelle que c'est un groupe à 2n éléments engendré par une rotation r_n d'ordre n et une réflexion s_n d'ordre 2, vérifiant de plus $s_n r_n s_n^{-1} = r_n^{-1}$. On considère une variable aléatoire S qui tire au hasard un sommet de P_n selon une distribution uniforme, et une variable aléatoire P qui tire au hasard un élément de D_n . On note Z = P(S).

- 1. Calculer les entropies H(S) et H(P).
- 2. Dans le cas où P suit une loi uniforme, calculer H(Z).
- 3. Montrer que quelle que soit la loi de P, $H(Z) \geqslant H(S)$.
- 4. On suppose que P_n est le polygone dans \mathbb{C} de sommets $e^{2ik\pi/n}$ pour $k=0,\ldots,n-1$. On note X l'abscisse de S, et Y l'ordonnée de S. Déterminer les lois de X et Y.
- 5. Calculer H(X), H(X|Y) et H(Y|X).