Théorie de l'information – TD1 – Corrigé

Remarques générales

- Veillez à soigner la présentation et la rédaction. La clarté et la lisibilité des raisonnements sont primordiales en mathématiques.
- Attention aux lettres muettes, variables etc. Si x est un réel fixé, l'expression (1/(1-x))' n'a pas de sens.

Exercice 5 (Divergence). Soient p,q des distributions de probabilité sur un même ensemble fini S. On définit leur divergence de Kullback-Leibler par

$$D_{\mathrm{KL}}(p||q) = \sum_{\substack{x \in S \\ p(x) > 0}} p(x) \log_2 \left(\frac{p(x)}{q(x)}\right) \in [0, \infty]$$

où l'on pose, pour tout x > 0, $x \log_2(x/0) = \infty$.

1. Donner un exemple montrant qu'en général, $D_{KL}(p||q)$ et $D_{KL}(q||p)$ ne sont pas égales.

Solution Sur un ensemble à deux éléments, considérons les distributions de probabilité p = (1/2, 1/2) et q = (1/2, 3/4). Alors

$$D_{\text{KL}}(p||q) = \frac{1}{2}\log_2\left(\frac{1/2}{1/4}\right) + \frac{1}{2}\log_2\left(\frac{1/2}{3/4}\right) = 1 - \frac{1}{2}\log_2(3)$$
 (1)

$$D_{\text{KL}}(q||p) = \frac{1}{4}\log_2\left(\frac{1/4}{1/2}\right) + \frac{3}{4}\log_2\left(\frac{3/4}{1/2}\right) = -1 + \frac{3}{4}\log_2(3)$$
 (2)

et $D_{\mathrm{KL}}(p||q) \neq D_{\mathrm{KL}}(q||p)$ car $\log_2(3)$ n'est pas rationnel.

2. En utilisant l'inégalité $\ln(x) \leq x - 1$ valable pour tout x > 0, montrer que $D_{KL}(p||q) \geq 0$.

Solution Soit $x \in S$ tel que p(x) > 0 et q(x) > 0. Alors

$$\log_2\left(\frac{q(x)}{p(x)}\right) \leqslant \frac{1}{\ln(2)}\left(\frac{q(x)}{p(x)} - 1\right) \tag{3}$$

et en multipliant par -p(x), on obtient :

$$p(x)\log_2\left(\frac{p(x)}{q(x)}\right) \geqslant \frac{1}{\ln(2)}(p(x) - q(x)). \tag{4}$$

Notons que cette inégalité est également valable pour tout $x \in S$ tel que p(x) > 0 et q(x) = 0. Alors

$$D_{\text{KL}}(p||q) \geqslant \frac{1}{\ln(2)} \sum_{\substack{x \in S \\ p(x) > 0}} (p(x) - q(x))$$
 (5)

$$= \frac{1}{\ln(2)} \left(1 - \sum_{\substack{x \in S \\ p(x) > 0}} q(x) \right) \geqslant 0.$$
 (6)

3. Montrer que $D_{KL}(p||q) = 0$ si et seulement si p = q.

Solution \Longrightarrow $Si \ p = q \ alors \ pour \ tout \ x \in S \ tel \ que \ p(x) > 0, \ on \ a \ q(x) > 0 \ et \ \log_2(\frac{p(x)}{q(x)}) = 0.$ Par conséquent, $D_{\mathrm{KL}}(p||q) = 0$.

 $\leq Si D_{KL}(p||q) = 0, alors par (6) :$

$$\sum_{\substack{x \in S \\ p(x) > 0}} q(x) = 1$$

ce qui montre en particulier que pour tout $x \in S$, p(x) = 0 si et seulement si q(x) = 0. De plus, par (5):

$$D_{\mathrm{KL}}(p||q) = \sum_{\substack{x \in S \\ p(x) > 0}} (p(x) - q(x)).$$

Alors par (3) et (4), pour tout $x \in S$ tel que p(x) > 0, $\ln(\frac{p(x)}{q(x)}) = 1 - \frac{p(x)}{q(x)}$: ceci implique que p(x) = q(x). On a donc montré que p = q.

4. Est-ce que D_{KL} définit une distance sur l'ensemble des distributions de probabilité sur S ?

Solution Non, car d'après la question 1, la divergence n'est pas symétrique.

Exercice 6 (Loi géométrique). Soit X une variable aléatoire à valeurs dans \mathbb{N} suivant la loi géométrique de paramètre $p \in [0,1]$. Cette loi vérifie pour tout $n \in \mathbb{N}$: $\mathbb{P}(X=n) = p^n(1-p)$. (Attention à cette convention! Il y a au moins 4 définitions possibles de l'expression "loi géométrique".)

lacktriangle On se convainc aisément que les résultats de l'exercice précédent sont encore valables pour une variable aléatoire à valeurs dans \mathbb{N} .

 \blacktriangle Il vaut mieux supposer $p \in]0,1[$, car la formule ci-dessus ne définit pas une loi de probabilité pour p=1, et définit une loi concentrée en 0 si p=0.

1. Rappeler quel type de situation est modélisé par la loi géométrique.

Solution On considère des tirages successifs d'une variable de loi de Bernoulli de probabilité de succès p, numérotés 0,1,2... La loi géométrique décrit le nombre de succès avant le premier échec: plus précisément, X=n si et seulement si les tirage numéroté 0,1,...,n-1 sont des succès et le tirage n est un échec.

2. Calculer l'espérance de X. La série entière $S = \sum_{n\geqslant 0} x^k = \frac{1}{1-x} \in \mathbb{R}((x))$ a un rayon de convergence 1. Par conséquent, sa dérivée S' a également rayon de convergence 1, et

$$S'(x) = \sum_{n \ge 1} nx^{n-1} = \frac{1}{(1-x)^2}.$$

On en déduit que X admet une espérance qui vaut

$$\mathbb{E}(X) = \sum_{n=1}^{\infty} np^n (1-p) \tag{7}$$

$$= p(1-p)\sum_{n=1}^{\infty} np^{n-1}$$
 (8)

$$=\frac{p}{1-p}. (9)$$

3. Calculer l'entropie de X.

$$H(X) = -\sum_{n \ge 0} p^n (1 - p) \log_2(p^n (1 - p))$$
(10)

$$= -(1-p) \left[\log_2(p) \sum_{n \geqslant 0} np^n + \log_2(1-p) \sum_{n \geqslant 0} p^n \right]$$
 (11)

$$= -\log_2(p)\frac{p}{(1-p)} - \log_2(1-p) \tag{12}$$

$$= -\mathbb{E}(X)\log_2(p) + \log_2(1-p). \tag{13}$$

4. Soit Y une variable aléatoire à valeurs dans \mathbb{N} d'espérance $\mathbb{E}(X)$. Exprimer H(X) - H(Y) en fonction de la divergence de Kullback-Leibler des lois de X et Y, et en déduire que $H(Y) \leq H(X)$.

Solution Notons p_X, p_Y les lois respectives de X et Y. Par définition,

$$\begin{split} D_{\mathrm{KL}}(p_Y \| p_X) &= \sum_{n \mid p_Y(n) > 0} p_Y(n) \log_2(p_Y(n)) - \sum_{n \mid p_Y(n) > 0} p_Y(n) \log_2(p_X(n)) \\ &= -H(Y) - \sum_{n=0}^{\infty} p_Y(n) \log_2(p^n(1-p)) \\ &= -H(Y) - \log_2(p) \sum_{n=0}^{\infty} n p_Y(n) - \log_2(1-p) \qquad & (\operatorname{car} \sum_n p_Y(n) = 1) \\ &= -H(Y) - \log_2(p) \mathbb{E}(Y) - \log_2(1-p) \\ &= H(X) - H(Y). \qquad & (\operatorname{car} \mathbb{E}(Y) = \mathbb{E}(X)) \end{split}$$

Par positivité de la divergence, on conclut que $H(X) \geqslant H(Y)$.