Théorie de l'information - TD2

Exercices à rendre pour le 20/10: 7 et 8.

Exercice 1 (Codes préfixes et uniquement décodables). Parmi les codes binaires suivants, dire lesquels sont préfixes et lesquels sont uniquement décodables. Ici, on assimile un code C sur un ensemble $\{a_1, \ldots, a_n\}$ au n-uplet $(C(a_1), \ldots, C(a_n))$ (à permutation près).

- *1.* (00, 01, 10, 11)
- 2. (0,01,001)
- *3.* (000, 01, 001)
- 4. (00, 10, 11, 011, 010)
- *5.* (0, 01)

Exercice 2 (Écriture binaire). 1. Le code binaire sur $\{0,1,\ldots,9\}$ qui à un entier associe son écriture en base 2 est-il préfixe? Uniquement décodable?

- 2. Le code binaire sur $\mathbb N$ qui à un entier associe son écriture en base 2 est-il préfixe ? Uniquement décodable ?
- 3. Le codage sur $\{0,1,\ldots,9\}^*$ qui à l'écriture d'un entier en base 10 associe l'écriture de ce même entier en base 2 est-il uniquement décodable ?

Exercice 3 (Étude d'un code). On définit le code thermomètre (ou code unaire) sur l'alphabet \mathbb{N} par: T(0) = 1, T(1) = 01, T(2) = 001, T(3) = 0001...

- 1. Montrer que T est uniquement décodable.
- 2. Soit X une source sur $\mathbb{N}_{>0}$. Montrer que la longueur moyenne de T relativement à X est finie si et seulement si X admet une espérance finie. Dans ce cas, calculer la longueur moyenne de T.
- 3. Montrer que si X suit la loi géométrique de paramètre 1/2, le code T est optimal.
- 4. Donner une autre loi pour laquelle T est optimal.

Exercice 4 (Divergence et changement de distribution). Soit A un alphabet, et X une source à valeurs dans A de distribution p. Soit q une autre distribution sur A. On rappelle que la divergence de Kullback-Leibler de p par rapport à q est définie par

$$D_{\mathrm{KL}}(p||q) = \sum_{\substack{x \in A \\ p(x) > 0}} p(x) \log_2 \left(\frac{p(x)}{q(x)} \right).$$

- 1. Montrer qu'il existe un code préfixe C sur A tel que la longueur de C(a) soit $[-\log_2 q(a)]$.
- 2. Pour un tel C, montrer que sa longueur moyenne ℓ_C vérifie

$$H(X) + D_{KL}(p||q) \le \ell_C \le H(X) + D_{KL}(p||q) + 1.$$

3. Que représente alors $D_{KL}(p||q)$?

Exercice 5 (Code de Huffman). Soit X une variable aléatoire à valeurs dans $\{0, 1, 2, 3, 4, 5\}$ de loi p_X définie par $p_X(0) = p_X(1) = p_X(2) = 1/8$, $p_X(3) = 1/2$, $p_X(4) = p_X(5) = 1/16$.

- 1. Construire un code binaire de Huffman H associé à X.
- 2. Coder le message 024322 à l'aide de H.
- 3. Calculer la longueur moyenne et l'efficacité de H relativement à X.

Exercice 6 (Code de Shannon-Fano). On considère la source X de l'exercice précédent.

- 1. Construire un code binaire de Shannon-Fano SF associé à X.
- 2. Coder le message 024322 à l'aide de SF.
- 3. Calculer la longueur moyenne et l'efficacité de SF relativement à X.

Exercice 7 (Code de Gray). Soit X une variable aléatoire discrète à valeurs dans $\{0, 1, 2, 3\}$ de loi p_X telle que $p_X(0) = 1/6$, $p_X(1) = 1/3$, $p_X(2) = p_X(3) = 1/4$. On considère le code de Gray $G: 0 \mapsto 00$, $1 \mapsto 01$, $2 \mapsto 11$, $3 \mapsto 10$. Sa particularité est que les mots de code associés à deux entiers successifs diffèrent seulement d'un bit.

- 1. Calculer l'entropie de X.
- 2. Coder le message 301223 à l'aide de G.
- 3. Calculer la longueur moyenne et l'efficacité de G relativement à X.
- 4. Construire le code de Huffman associé à la source X. Calculer sa longueur moyenne et son efficacité relativement à X.
- 5. Conclure.

Exercice 8 (Codes de longueurs données). Pour quelles valeurs de $n \ge 4$ existe-t-il un code binaire C uniquement décodable sur $\{1...n\}$ dont les longueurs des mots de code vérifient : $\ell(C(1)) = \ell(C(2)) = 2$, $\ell(C(3)) = 3$, et $\ell(C(i)) = 5$ pour tout $i \in \{4...n\}$?

Exercice 9 (Compression à perte). Soit X une variable aléatoire à valeurs dans un ensemble fini S. Soit T une partie non vide de S.

- 1. Soit C un code binaire uniquement décodable sur T. Proposer un code binaire sur S de même longueur que C, avec une fonction de décodage de probabilité d'erreur $p(X \notin T)$.
- 2. On suppose dans cette question que S est un ensemble à 8 éléments, et la distribution de probabilités de X est $(\frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16}, \frac{1}{16})$. Proposer un code à perte pour X avec une probabilité d'erreur 1/4, puis un code avec une probabilité d'erreur 1/2.

Exercice 10 (* Symbole de poids fort dans le codage de Huffman). On considère une variable aléatoire X à valeurs dans un alphabet $A = \{a_1, \ldots, a_n\}$, dont la loi p_X vérifie $p_X(a_1) \ge p_X(a_2) \ge \cdots \ge p_X(a_n)$. Soit H le code de Huffman associé à X.

- 1. Montrer que si $p_X(a_1) > 2/5$ alors $H(a_1)$ est de longueur 1.
- 2. Montrer que s'il existe i tel que la longueur de $H(a_i)$ soit 1 alors $p_X(a_1) \ge 1/3$.
- 3. Que se passe-t-il entre 1/3 et 2/5 ?