Théorie de l'information – TD2 – Corrigé

Exercice 2 (Écriture binaire). 1. Le code binaire C sur $\{0,1,\ldots,9\}$ qui à un entier associe son écriture en base 2 est-il régulier? préfixe? Uniquement décodable?

Solution Ce code est régulier, car les écritures binaires des entiers de 0 à 9 sont deux à deux distinctes. Il n'est pas préfixe, ni uniquement décodable. En effet, $C(3) = 11 = C(1)||C(1)| = C^*(11)$.

2. Le code binaire D sur $\mathbb N$ qui à un entier associe son écriture en base 2 est-il régulier ? préfixe ? uniquement décodable ?

Solution Le code D est régulier, car il est la bijection inverse de l'application $b_2: \{0,1\}^* \to \mathbb{N}$ qui pour tout entier $n \in \mathbb{N}$ associe au mot $a_0 \cdots a_n \in \{0,1\}^n$ l'entier $a_0 + 2a_1 + \cdots + 2^n a_n$. Il n'est ni préfixe, ni uniquement décodable pour la même raison que C.

3. Le codage B sur $\{0, 1, \ldots, 9\}^*$ qui à l'écriture d'un entier en base 10 associe l'écriture de ce même entier en base 2 est-il uniquement décodable ?

Solution Le codage B est uniquement décodable, car il est la composée de deux bijections : la bijection b_{10} : $\{0,1,\ldots,9\}^* \to \mathbb{N}$ qui pour tout entier naturel n associe au mot $a_0 \cdots a_n$ l'entier $a_0 + 10a_1 + \cdots + 10^n a_n$, et l'inverse de la bijection b_2 définie à la question précédente.

Exercice 7 (Code de Gray). Soit X une variable aléatoire discrète à valeurs dans $\{0, 1, 2, 3\}$ de loi p_X telle que $p_X(0) = 1/6$, $p_X(1) = 1/3$, $p_X(2) = p_X(3) = 1/4$. On considère le code de Gray $G: 0 \mapsto 00$, $1 \mapsto 01$, $2 \mapsto 11$, $3 \mapsto 10$. Sa particularité est que les mots de code associés à deux entiers successifs diffèrent seulement d'un bit.

1. Calculer l'entropie de X.

Solution

$$\begin{split} H(X) &= -\frac{1}{6}\log_2\left(\frac{1}{6}\right) - \frac{1}{3}\log_2\left(\frac{1}{3}\right) - 2 \cdot \frac{1}{4}\log_2\left(\frac{1}{4}\right) \\ &= \frac{\log_2(6)}{6} + \frac{\log_2(3)}{3} + \frac{\log_2(4)}{2} \\ &= \frac{7}{6} + \frac{1}{2}\log_2(3) \\ &\sim 1.96 \end{split}$$

2. Coder le message 301223 à l'aide de G.

Solution $G^{\star}(301223) = 1000011111110.$

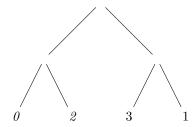
3. Calculer la longueur moyenne et l'efficacité de G relativement à X.

Solution La longueur moyenne $\ell_X(G)$ de G vaut 2 car G est de longueur fixe 2. L'efficacité de G relativement à X est

$$\begin{aligned} \operatorname{Eff}_X(G) &=& \frac{H(X)}{\ell_X(G)} \\ &=& \frac{7}{12} + \frac{1}{4} \log_2(3) \\ &\simeq & 0.98. \end{aligned}$$

4. Construire le code de Huffman associé à la source X. Calculer sa longueur moyenne et son efficacité relativement à X.

Solution L'algorithme vu en cours produit l'arbre suivant:



Le code de Huffman associé à X est donc $0\mapsto 00, 1\mapsto 11, 2\mapsto 01, 3\mapsto 10$. Il est de longueur fixe 2, donc de longueur moyenne 2. Son efficacité relativement à X est la même que celle de G.

5. Conclure.

Solution Cela signifie que le code G est optimal.

Exercice 8 (Codes de longueurs données). Pour quelles valeurs de $n \ge 4$ existe-t-il un code binaire C uniquement décodable sur $\{1 \dots n\}$ dont les longueurs des mots de code vérifient : $\ell(C(1)) = \ell(C(2)) = 2$, $\ell(C(3)) = 3$, et $\ell(C(i)) = 5$ pour tout $i \in \{4 \dots n\}$?

Solution D'après l'inégalité de Kraft-McMillan, s'il existe un tel code alors

$$\frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{n-3}{2^5} \leqslant 1$$

c'est-à-dire

$$\frac{5}{8} + \frac{n-3}{32} \leqslant 1.$$

Ceci équivaut à $n-3\leqslant \frac{32\cdot 3}{8},$ i.e. $n\leqslant 15.$ Pour tout $n\in \{4\dots 15\},$ comme l'inégalité

$$\frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{n-3}{2^5} \leqslant 1$$

est vérifiée, les longueurs données sont celles d'un code de Shannon-Fano. Les valeurs cherchées sont donc $4,5,\ldots,15$.